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Abstract

A model is designed for predicting the elastic constants of a random planar network of interconnected fibres while
accounting for two features of such networks: negative Poisson ratio behaviour and random triangulation. The model
is based on a periodic network involving both plates and fibres segments, with possibility of reentrant cell shapes. The
plates are intended to represent the effect of triangulation. Bounds for the elastic constants are obtained by calculating
volume weighted averages of the elastic properties for periodic networks characterised by a uniform distribution of in-
plane fibre orientations. Predictions are derived for the dependence of the in-plane Young�s modulus, out-of-plane
Young�s modulus, and in-plane shear modulus on out-of-plane fibre orientation for a fibre volume fraction of 0.20. These
predictions are assessed by reference to experimental results for transversely isotropic networks, with very low average
out-of-plane fibre orientation, made by sintering compressedmats of stainless steel fibres. A comparison is alsomade with
the predictions of a model for truss lattice core, which is liable to represent the case of a fully triangulated network.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Solid networks made of an assembly of interconnected fibres tightly bonded at the fibre contact points
constitute a particular type of open-celled ‘‘cellular’’ material. In the case of metallic fibres, interconnected
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Fig. 1. Orientation of a fibre segment with respect to the co-ordinate axes. For a random planar network, plane (x1,x2) is taken as the
plane of transverse isotropy (‘‘in-plane’’ directions) and direction x3 as the isotropy axis (‘‘out-of-plane’’ direction).
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networks with controlled fibre volume fraction and orientation distribution can be prepared by sintering
felts of fibres. Such metallic fibre networks could find application as core material for lightweight sandwich
plates combining both structural and heat transfer properties. For a given fibre volume fraction, Vf, these
properties strongly depend on the anisotropy of the fibre orientation distribution. Faithful models for pre-
dicting the elastic behaviour of networks of interconnected fibres are needed for the design of sandwich
cores with optimised properties. The potentially very high anisotropy and the fact that no elementary pol-
yhedron constituting a ‘‘cell’’ can be defined render fibre networks quite different from cellular solids in
general.

The model developed in the present paper is constructed and assessed by reference to experimental re-
sults for transversely isotropic, random fibre networks made by sintering compressed mats of 12lm diam-
eter fibres of stainless steel 316L with Vf = 0.20 (a product of N.V. Bekaert S.A., Belgium). Measurement of
the whole set of five independent elastic constants ensuing from the transversely isotropic symmetry of this
reference material was reported by Delannay and Clyne (1999). As sketched in Fig. 1, we define the orien-
tation of a fibre segment by the spherical coordinate angles w and h with respect to a right handed Cartesian
system of axes. Plane (x1,x2) is the plane of transverse isotropy of the network (‘‘in-plane’’ directions) and
direction x3 is the axis of symmetry (‘‘out-of-plane’’ direction). Observation by scanning electron micros-
copy indicated that, in the considered reference material, (i) the distribution of the ‘‘out-of-plane’’ angles
w is limited to small angles (77% of the fibres were found to be in the range 0� 6 w 6 10�) and (ii) the aver-
age distance L between two nodes along a fibre is somewhat less than 10 fibre diameters D (Delincé and
Delannay, 2004). Denoting E the Young�s modulus of the fibres, the non-dimensional in-plane modulus
E1/E was �35 · 10�3, the out-of-plane modulus E3/E was �1.1 · 10�3 and the in-plane shear modulus
G13/E was �1.2 · 10�3 (Delannay and Clyne, 1999). Strikingly, a quite large negative Poisson ratio
m13 � �1.7 was measured in the out-of-plane direction.

Recently, Delincé and Delannay (2004) presented a model for predicting the dependence of the stiffness
matrix, Cij or compliance matrix, Sij (as defined by Nye, 1985) of random planar fibre networks on fibre
volume fraction and fibre orientation distribution. The elastic behaviour was analysed by considering
the periodic network sketched in Fig. 2. This network involves only rings of six interconnected fibre seg-
ments. All segments have the same length and exhibit only two out-of-plane orientations +w and �w
and two in-plane orientations h1 and h2. That model is unable to account for the possibility of negative
Poisson ratio behaviour, which is a major feature of the tests carried out on the reference material. Indeed,
although other structural mechanisms can bring about negative Poisson ratio (Rothenburg et al., 1991;



Fig. 2. Periodic network used in the model of Delincé and Delannay (2004).
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Milton, 1992), negative Poisson ratio in cellular solids is commonly considered to result from reentrant cell
shapes (Schajer and Robertson, 1974; Kolpakov, 1985; Lakes, 1987, 1991; Friis et al., 1988; Evans et al.,
1994; Gibson and Ashby, 1997; Overaker et al., 1998a,b).

Although the trends revealed by the model of Delincé and Delannay (2004) appeared sound from the
mechanical point of view, the model predictions were found to underestimate the elastic constants meas-
ured for the reference material. This too large compliance was ascribed to the fact that the model did
not consider the presence of triangles formed by three mutually intersecting fibres. Such a triangulation ef-
fect increases the network stiffness because bending of the fibres is prevented in the direction parallel to the
plane of the triangles. Intuitively, the degree of triangulation is expected to be larger when fibres are more
parallel to one another, i.e. when the average out-of-plane angle w is smaller. In Appendix A, a simple
model is used for demonstrating that, indeed, the magnitude of the in-plane modulus E1 measured for
the reference fibre network cannot be accounted for without considering the effect of triangulation.

The objective of the present paper is to develop a new model liable to circumvent the limitations of the
model of Delincé and Delannay (2004). This new model involves (i) the possibility of reentrant shapes that
could bring about negative Poisson ratio behaviour, and (ii) the presence of plates intended to reproduce
the effect of triangles of fibres. As for the model introduced by Delincé and Delannay (2004), bounds for the
components of the stiffness matrix, Cij or compliance matrix, Sij are derived using Voigt and Reuss aver-
aging procedures. The results of the two models are compared to predictions for truss lattices and evaluated
with respect to the experimental data for the reference material.
2. Model

2.1. Geometry of the periodic model networks

Fig. 3a illustrates the architecture of amodel network of fibres designed for exhibiting the requested behav-
iour. The difference with respect to the network of Fig. 2 is that the network combines rings of 6 fibre segments
together with equilateral triangles of 3 fibre segments. The segments forming the triangles are parallel to the
plane of transverse isotropy (w = 0) whereas the other segments present two symmetrical out-of-plane
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Fig. 3. (a) Network combining rings of 6 fibres segments and equilateral triangles of 3 fibres segments. The segments forming the
triangles are parallel to the plane of transverse isotropy (w = 0) whereas the other segments present two symmetrical out-of-plane
orientation angles +w and �w and three different in-plane orientation angles; (b) same network with triangles of fibres substituted by
triangular plates; (c) simplified model obtained by merging two triangular plates to form a rectangular plate.
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orientation angles +w and �w. Three different in-plane orientation angles h1, h2 and h3 (not specified on the
figure) are given to the three pairs of segments meeting at the corners of the triangles. All fibres have the same
diameter,D. The segments forming the equilateral triangles have a length,Ltr which differs from the length,L,
of the other segments. The ratio Ltr/L is an adjustable parameter allowing the tuning of the degree of trian-
gulation in the network. It can easily be realised that, in addition to accounting for triangulation, the network
of Fig. 3a can present reentrant shapes liable to bring about negative Poisson ratio behaviour.

Fig. 3b presents a similar network design in which each group of three fibre segments forming a triangle
has been substituted by a triangular plate. This network presents essentially the same mechanical properties
as the original one if the plate thickness, T, is chosen to be such that the plate volume is equal to the volume
of the three original fibre segments (i.e., T ¼

ffiffiffi
3

p
pD2=Ltr). Indeed, as for triangles of fibres, only stretching

and shearing contribute to the in-plane deformation of plates, whereas bending governs the out-of-plane
deformation (the shearing contribution being negligible if the ratio Ltr/T is large enough).



Fig. 4. First type of periodic model used for predicting the elastic properties of a random planar network of interconnected fibres.
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The analysis of the elastic behaviour of such a periodic network containing triangular plates with two dif-
ferent orientations and fibres segments with three different in-plane orientation angles h is fairly complex. In
order to simplify this analysis, we propose to substitute this network by a network in which pairs of triangular
plates with different orientations aremerged to form a rectangular plate, as represented in Fig. 3c. In this way,
the fibre segments present only two different in-plane orientation angles h (as for the model of Fig. 2). As de-
tailed in Sections 2.2 and 2.3 hereafter the length and width of the plates can be chosen such as to comply with
the spatial distribution of the nodes in the network whereas their thickness can be chosen such as to comply
with the solid volume fraction Vf. The basic assumption is that the mechanical behaviours of the networks of
Fig. 3b and c are qualitatively similar. It will be shown that, indeed, the dependence on w of the elastic prop-
erties predicted for amodel based onFig. 3c follows a similar trend as for themodel of Fig. 2. In order to allow
triangulation to operate in different plane directions, two different periodic model networks based on Fig. 3c
have to be considered (a preliminary report on this modelling approach was given by Delannay, 1998).

The first periodic model network to be considered is sketched in Fig. 4. The model directly derives from
Fig. 3c: it consists of a periodic arrangement of fibre segments of length L oriented along the four directions
(+h,+w), (+h,�w), (�h,+w) (the latter being the orientation of the fibre segment specified in Fig. 4), and
(�h,�w). These fibre segments are connected to square plates of size (aL · aL · t 0L) perpendicular to axis
x3. The values of h and w may be chosen anywhere in the ranges �p 6 h 6 p and 0 6 w 6 p/2. The major
feature of this periodic network is that it expands along x3 under tension loading along x2 when �p < h < 0
and under tension loading along x1 when h < �p/2 or h > p/2: negative Poisson ratio behaviour is thus al-
lowed in the out-of-plane direction (as observed for the reference material). The values to be chosen for the
size parameters a and t 0 of the plates are discussed in Sections 2.2 and 2.3 hereafter. Obviously, the larger a
and t 0, the larger the triangulation contribution to the network stiffness.

In order to account for other possible triangulation planes, it is necessary to consider also the second
type of model illustrated in Fig. 5. It consists of the same regular arrangement of fibre segments of length
L oriented along the four directions (+h,+w), (+h,�w), (�h,+w) (the latter being the orientation of the
fibre indicated in Fig. 5), and (�h,�w), but these fibre segments are now connected to rectangular plates
of size (aL · cL · t00L) perpendicular to axis x1. In this case, the values of h and w may be chosen anywhere
in the ranges �p/2 6 h 6 p/2 and �p/2 6 w 6 p/2. Referring to Fig. 5, one notices that the network
expands along x1 under tension loading along x2 when �p/2 < h < 0 and under tension loading along x3
when �p/2 < w < 0. The plates account for triangulation in the plane perpendicular to x1. The values to
be chosen for the size parameters a, c, and t00 are discussed in Sections 2.2 and 2.3.

As detailed in Section 2.5, the procedure will consist in calculating the bounds for the elastic properties
of a ‘‘composite’’ combining periodic networks such as illustrated in Figs. 4 or 5 with w and h distributed in



Fig. 5. Second type of periodic model used for predicting the elastic properties of a random planar network of sintered fibres.
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their admissible ranges. As the original periodic networks present orthotropic symmetry, the results of this
averaging procedure keep complying with orthotropy. In order to retrieve the transverse isotropy of the
actual networks, these results will then be averaged with respect to all rotations around the x3 axis. Finally,
in order to account for the different planes in which triangulation can exist, averages will be taken of the
results for plates perpendicular to x1, x2 and x3. As x1 and x2 are equivalent, this means that the model of
Fig. 5 will be given twice the weight of the model of Fig. 4.

2.2. Plate size parameters a and c

As proposed by Delincé and Delannay (2004), the architecture of any particular random planar fibre
network may be characterised by a node distribution function FdLfsdhdw (Lfs,h,w) which expresses the prob-
ability that a fibre segment originating from a particular node meets another fibre at another node located
at a distance between Lfs and Lfs + dLfs in a direction included within the solid angle between (h,w) and
(h + dh,w + dw). For constructing the model networks, it makes sense to choose as length L of the fibre
segments the average distance between two nodes connected by a fibre segment in the actual network. This
average can be calculated as
L ¼
Z 1

Lfs¼0

Z p=2

w¼0

Z 2p

h¼0

F dLfs dh dwðLfs; h;wÞLfs coswdLfs dhdw: ð1Þ
The distribution Fdw(w) of the relative orientations of pairs of nodes connected by a fibre segment is ob-
tained as
F dwðwÞ ¼
1

L

Z 1

Lfs¼0

Z 2p

h¼0

F dLfs dh dwðLfs; h;wÞLfs coswdLfs dh: ð2Þ
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Fig. 6. Unit cell representing the average distribution of the nodes in the network.
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Fdw(w) is similar, but not exactly identical, to the fibre orientation distribution. Indeed, in actual networks,
fibres are not perfectly straight between nodes and the contact points constituting the nodes are not along
the fibre axis.

In order to find the ratio a/c of the plate sizes which best complies with the architecture of the actual
random planar network to be modelled, we propose to determine the parameters, denoted a*L and c*L,
of a body-centred tetragonal lattice which would best represent the distribution of the nodes in the network.
Let us, for this purpose, locate the origin of the coordinates system of axes at a particular node, as sketched
in Fig. 6. The eight most probable positions of the nodes closest to this particular one are at the apexes of a
tetragonal unit cell, the parameters, a*L and c*L, of which are equal to twice the averages of the projec-
tions, on the three coordinate axes, of a fibre segment of length L originating from the node at the origin.
For a transversely isotropic network, a* and c* are obtained as
a� ¼ 2

R p=2
w¼0

R p=2
h¼0 F dwðwÞ cos h coswdhdwR p=2
w¼0

R p=2
h¼0 F dwðwÞdhdw

¼ 4

p

Z p=2

w¼0

F dwðwÞ coswdw ð3Þ
and
c� ¼ 2

R p=2
w¼0 F dwðwÞ sinwdwR p=2

w¼0 F dwðwÞdw
¼ 2

Z p=2

w¼0

F dwðwÞ sinwdw: ð4Þ
As only 4 fibre segments (i.e. two fibres crossing one another) meet at the node located at the centre of the
unit cell, the latter would be connected to only four among the eight nodes of which the average positions
are at the apexes of the unit cell. It can be noticed that, with the definitions (3) and (4) of a* and c*, the
distance between the origin and the unit cell apexes is not equal to L.

The parameters a* and c* thus depend only on the distribution Fdw(w). The simplest case consists in con-
sidering that all fibres have the same orientation w (i.e. Fdw(w) = d(w) where d(w) is the Dirac function). In
that case, relations (3) and (4) yield
a� ¼ 4

p
cosw ð5Þ
and
c� ¼ 2 sinw: ð6Þ

A more realistic case would be a network in which the distribution Fdw(w) is uniform from w = 0 up to a
maximum w = wm beyond which it is zero. Relations (3) and (4) yield in that case
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a� ¼ 2

p sinwm

wm þ sin 2wm

2

� �
ð7Þ
and
c� ¼ sinwm: ð8Þ

a* and c* can be derived in a similar way for any other distribution Fdw(w).

Two characteristics of fibre networks can be quite easily measured experimentally: the fibre volume frac-
tion Vf and the fibre orientation distribution, which we can take as representative of Fdw(w) (Delincé and
Delannay, 2004). In contrast, it is very difficult to measure the average distance L between two nodes. How-
ever, if one assumes that the fibre cross sections are circular with constant diameter, D and that the fibre
segments are straight between nodes, L is a function only of Vf and Fdw(w). Indeed, each unit cell repre-
sented in Fig. 6 contains in average four fibres segments of length L. Hence, neglecting the volume of
the node itself, the fibre volume fraction writes
V f ¼ 4L
pD2

4

1

L3a�2c�
ð9Þ
or
D
L
¼ 1

l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V fa�2c�

p

r
: ð10Þ
The dependence of l on Fdw(w) expresses through a* and c*.
In order to get the best correspondence between the periodic model networks of Figs. 4 and 5 and the

actual network architecture, it makes sense to take a = ka* and c = kc* with the same proportionality fac-
tor k. The next issue is the choice of the value to be given to k in order to correctly represent the degree of
triangulation in the network: the larger the factor k, the larger the triangulation, hence the larger the net-
work stiffness. In the lack of pertinent a priori argument for orienting the choice of k, k remains an adjust-
able parameter to be identified a posteriori by comparing model predictions to experimental data. Although
the model of the present paper can be developed for any value of k (except for the limitation mentioned in
Section 2.3), all computational results presented in the present paper were obtained with k = 1, i.e. by tak-
ing a = a* and c = c*.

2.3. Plate thickness parameters t 0 and t00

The thickness parameters t 0 and t00 can be derived by considering in Figs. 4 and 5 the representative vol-
ume elements (RVE) of size (X 01 · X 02 · X 03) and (X001 · X002 · X003), respectively, around the fibre segment
AB. In Fig. 4, the volume V 0

RVEðh;wÞ of the RVE writes
V 0
RVEðh;wÞ ¼ L3ðaþ cosw sin hÞðaþ cosw cos hÞ sinw; ð11Þ
whereas, in Fig. 5, the volume V 00
RVE of the RVE writes
V 00
RVEðh;wÞ ¼ L3ðaþ cosw sin hÞðcþ sinwÞ cosw cos h: ð12Þ
The actual random network behaves like a ‘‘composite’’ network combining all networks with angles h and
w distributed according to the actual fibre orientation distribution. The volume fraction Vf of solid can thus
be calculated by noticing that each RVE contains one fibre segment and 1/4 of the volume of a plate. For
example, for the network of Fig. 5,
V f ¼
1

hV 00 i
t00acL3

4
þ pD2L

4

� �
; ð13Þ
RVE
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where hV 00
RVEi denotes the average RVE volume in the composite network. In the case of random planar

symmetry, this average volume can be derived from the orientation distribution function Fdw(w) as
hV 00
RVEi ¼

R p=2
w¼�p=2

R p=2
h¼�p=2 V

00
RVEðh;wÞF dwðwÞdhdwR p=2

w¼�p=2

R p=2
h¼�p=2 F dwðwÞdhdw

: ð14Þ
For the network of Fig. 4, the average RVE volume hV 0
RVEi is obtained using a similar relation as (14),

except that the integration is then carried out over the ranges �p 6 h 6 p and 0 6 w 6 p/2. It may be
verified that, combining (11) or (12) with (14), the same result is obtained whatever the fibre orientation
distribution F(w):
hV 0
RVEi ¼ hV 00

RVEi ¼ 1
2
L3a2c: ð15Þ
The model breaks down if a (=ka*) and c (=kc*) are taken too small: indeed, combination of (13) and (15)
shows that t 0 and t00 decrease with decreasing k and they should be given a negative value below a certain
value of k.

In the following of this paper, we consider only the choice a = a* and c = c* (k = 1). For this particular
case, relations (10), (13), and (15) yield, for the network of Fig. 4,
t0 ¼ V fc ð16Þ
and, for the network of Fig. 5,
t00 ¼ V fa: ð17Þ
Combining (16) and (17) with (9) shows that, whatever the distribution Fdw(w), the volume of each plate is
then equal to the volume of 4 fibre segments of length L.

2.4. Expression of compliance matrix components Sij

The method used for the analysis of the elastic behaviour of the periodic networks of Figs. 4 and 5 is an
extension to the 3D case of the method used by Gibson and Ashby (1997) for the analysis the elastic prop-
erties of 2D honeycombs (the present paper is limited to the study of the elastic behaviour but the two
model networks of Figs. 4 and 5 could also be used for evaluating the resistance of a random fibre network
to buckling or yielding).

As the two periodic models present orthotropic symmetry, their compliance matrix involves nine inde-
pendent components Sij (Nye, 1985), which will be denoted S0

ij and S00
ij for the cases of Figs. 4 and 5, respec-

tively. Analytical expressions for these components have been derived by considering:
(i) for the fibre segments, the deformations in bending and stretching but not in shearing;
(ii) for the plates, the in-plane deformations in stretching and shearing and the out-of-plane deformations

in bending but not in shearing;
(iii) no relative rotation of the fibres and plates at the nodes.
Accounting for stretching of the beams and of the plates was necessary in order to avoid obtaining infinite
stiffness at the limits of the h, w ranges where fibres and plates align with the loading directions. Using rela-
tions (7)–(12) together with relations (18) and (19), it may be verified that, for networks with volume frac-
tion Vf 6 0.2, the aspect ratio of the fibres and plates is always large enough for neglecting shearing in
comparison to bending for the transverse deflection of the beams and for the out-of-plane deflection of
the plates. Approximation (iii) may be the most questionable as, if the contact nodes are not sufficiently
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welded (which depends on the sintering conditions used for consolidating the network), the stiffness of the
connections between the fibres can be not large enough as to prevent some relative fibre rotation.

The expressions for the S0
ij and S00

ij are given in Tables 1 and 2. The procedure for deriving these expres-
sions is presented in Appendix B. For symmetry reasons, the elastic response of the models under tension or
compression in directions parallel to the reference axes are completely specified by the behaviour of the rep-
resentative volume element (RVE) defined around the fibre segment AB in Figs. 4 and 5. The computation
Table 1
Non-dimensional compliance matrix components S0

ijE (using A ¼ 16l4

3p ) for the periodic model network of Fig. 4

S011E ¼ Aðaþ cosw sin hÞ sinwðaþ cosw cos hÞ�1 1þ 3
4
a2

l2
� 1� 3

4l2

� �
cos2wcos2h

h i
S012E ¼ �A sinw m 3

4
a2

l2
þ 1� 3

4l2

� �
cos 2w sin h cos h

h i
S013E ¼ �Aðaþ cosw sin hÞ cosw sinw cos h 1� 3

4l2

� �
S022E ¼ Aðaþ cosw cos hÞ sinwðaþ cosw sin hÞ�1 1þ 3

4
a2

l2
� 1� 3

4l2

� �
cos2wsin2h

h i
S023E ¼ �Aðaþ cosw cos hÞ cosw sinw sin h 1� 3

4l2

� �
S033E ¼ Aðaþ cosw sin hÞðaþ cosw cos hÞðsinwÞ�1 1� 1� 3

4l2

� �
sin2w

h i

S066E ¼ A
ðaþ cosw cos hÞ sinw

aþ cosw sin h
a2cos2wðcos h� sin hÞ2

ðaþ cosw sin hÞ2
þ 2

a2

l2
þ 3

4l2

(

� cos2wcos2hþ cos2w cos h sin hð2aþ cosw sin hÞ
aþ cosw cos h

þ aðaþ cosw sin hÞcos2wsin2h
ðaþ cos y cos hÞ2

" #)

S044E ¼ S055E ¼ A
ðaþ cosw sin hÞ sinw

aþ cosw cos h
a2 þ 3a6

4pV fc
þ 3

4l2
sin2wþ cos h coswð2aþ cos h coswÞ þ aðaþ cosw cos hÞcos2wsin2h

sin2w

" #( )

Table 2
Non-dimensional compliance matrix components S00

ijE (using A ¼ 16l4

3p ) for the periodic model network of Fig. 5

S0011E ¼ Aðaþ cosw sin hÞðcþ sinwÞðcosw cos hÞ�1 1� 1� 3
4l2

� �
cos2wcos2h

h i
S0012E ¼ �A 1� 3

4l2

� �
ðcþ sinwÞcos2w cos h sin h

S0013E ¼ �A 1� 3
4l2

� �
ðaþ cosw sin hÞ sinw cosw cos h

S0022E ¼ Aðcþ sinwÞ cosw cos hðaþ cosw sin hÞ�1 1þ 3
4
a2

l2
� 1� 3

4l2

� �
cos2wsin2h

h i
S0023E ¼ �A cosw cos h m 3

4
ac
l2
þ 1� 3

4l2

� �
cosw sinw sin h

h i
S0033E ¼ Aðaþ cosw sin hÞ cosw cos hðcþ sinwÞ�1 1þ 3

4
c2

l2
� 1� 3

4l2

� �
sin2w

h i
S0066E ¼ A

ðcþ sinwÞ cosw cos h
aþ cosw sin h

a2 þ 3a4c
4pV f

þ 3

4l2
cos2wþ 2a cosw sin hþ aðaþ cosw sin hÞtan2h
� �� 	

S0055E ¼ A
ðaþ cosw sin hÞ cosw cos h

cþ sinw
c2 þ 3c5

4pV f
þ 3

4l2
cos2wsin2hþ sinwð2cþ sinwÞ þ cðcþ sinwÞtan2w

cos2h


 �� 	

S0044E ¼ A
ðaþ cosw sin hÞ cosw cos h

cþ sinw
ðc cosw sin h� a sinwÞ2

ðaþ cosw sin hÞ2
þ 2

c2

l2
þ 3

4l2

(

� cos2wsin2hþ sinwð2cþ sinwÞ cosw sin h
aþ cosw sin h

þ cðcþ sinwÞsin2w
ðaþ cosw sin hÞ2

" #)
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of the shear components S0
44, S

0
55, S

0
66, S

00
44, S

00
55 and S00

66 requires considering twice as large RVEs involving a
pair of fibres. Using these expressions for S0

ij and S00
ij, the components C0

ij and C00
ij of the stiffness matrices are

obtained using the standard procedure for the inversion of the compliance matrix (Nye, 1985).
2.5. Computation of Reuss and Voigt bounds

Following common practice (e.g. Mura, 1982; Gommers et al., 1996) and similarly as done by Delincé and
Delannay (2004), bounds for the elastic constants of a random planar fibre network are obtained by calcu-
lating the Reuss and Voigt bounds for the elastic constants of a ‘‘composite’’ network made by combining
periodic networks of the type of Figs. 4 and 5 presenting uniformdistributions of the in-plane angle h. In order
to simplify computations, we have limited ourselves to the hypothetical case where all fibres have the same
orientation w (i.e. Fdw(w) = d(w)). This case allows to best capture the influence of the fibre orientation. In
order to account for the volume of the nodes, the effective length along which the fibre segments represented
in Figs. 4 and 5 deform has been taken in the computations as equal to L�D rather than to L.

The procedure for obtaining the Reuss bound starts by computing the volume weighted averages, S0R
ij

and S00R
ij , of the compliance matrix components S0

ij and S00
ij. For example, in the case of the model of Fig.

5, these averages write
S00R
ij ¼

R p=2
h¼�p=2½V

00
RVEðh;wÞS00

ijðh;�wÞ þ V 00
RVEðh;�wÞS00

ijðh;�wÞ�dhR p=2
h¼�p=2½V

00
RVEðh;wÞ þ V 00

RVEðh;�wÞ�dh
: ð18Þ
Secondly, as the compliance matrices S0R
ij and S00R

ij correspond to networks with orthotropic symmetry, the
Reuss bounds for the five independent stiffness components of a transversely isotropic network are derived
by averaging the S0R

ij and S00R
ij components with respect to all directions perpendicular to the x3 axis. The

relations to be used for that purpose were given in Table 2 of the paper of Delincé and Delannay
(2004). Finally, an average is taken of the stiffness matrix components calculated for periodic network mod-
els with plates perpendicular to x1, x2 and x3. As x1 and x2 are equivalent, the weight to be given to the
model of Fig. 5 is twice the weight to be given to the model of Fig. 4. Hence, we take, as the best repre-
sentative Reuss bound, the average matrix
SR
ij ¼

S0R
ij þ 2S00R

ij

3
: ð19Þ
The procedure for obtaining the Voigt bounds of the elastic constants is similar: it involves (i) the com-
putation of the volume weighted averages, C0V

ij and C00V
ij , of the nine components of the compliance matrices

C0
ij and C00

ij (derived from S0
ij and S00

ij using the standard procedure for the inversion of the compliance ma-
trix), (ii) the translation of these 9 C0V

ij and C00V
ij components into the five components complying with trans-

verse isotropy and (iii) the computation of CV
ij similarly as in (19). Finally, the Voigt bounds SV

ij of the
compliance matrix are derived from the matrix CV

ij by matrix inversion.
The Reuss and Voigt bounds ER

1 , E
R
3 , and GR

13 and EV
1 , E

V
3 , and GV

13 are directly obtained from the bounds
SR
ij and SV

ij with i = j. The bounds for the Poisson ratios m12 and m13 are somewhat more complex as they
derive from the fact that the two following conditions must be satisfied simultaneously (e.g. Gommers
et al., 1996):
SR
ij �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSR

ii � SiiÞðSR
jj � SjjÞ

q
6 Sij 6 SR

ij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSR

ii � SiiÞðSR
jj � SjjÞ

q
ð20Þ
and
SV
ij �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSii � SV

ii ÞðSjj � SV
jjÞ

q
6 Sij 6 SV

ij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSii � SV

ii ÞðSjj � SV
jjÞ

q
: ð21Þ
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3. Results and discussion

Fig. 7 presents the variation as a function of w of the Voigt and Reuss bounds for E1, E3 and G13 for a
fibre volume fraction Vf = 0.20. The overall behaviour is strikingly similar to the results obtained by Del-
incé and Delannay (2004) using the model illustrated in Fig. 2. E1 exhibits a broad maximum in the range
10� 6 w 6 50� and a sharp decrease when w increases above 70�. E3 presents very low values at low w and
increases monotonously with w to reach a wide maximum when w exceeds 45�. G13 is predicted to present a
wide maximum in the range 20� < w < 50�. As shown for example by Gibson and Ashby (1997) or Ashby
et al. (2000), G13 is the most important elastic constant to be considered for application of fibre networks as
core of sandwich structures. However, as sandwich cores should also have sufficient transverse stiffness, i.e.
sufficient E3 the optimum design value of w would presumably be larger than 40�.

Fig. 8 compares the predictions of the model of Delincé and Delannay (2004) (denoted ‘‘model 1’’) and
of this paper (denoted ‘‘model 2’’) for E1, E3 and G13. For this comparison, the curves presented for the two

models are the geometrical averages of the two calculated bounds, e.g. Eaverage
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EVoigt
1 EReuss

1

q
. Geometrical

averages can be considered as most representative of the predictions because (i), in both models, no geo-
metrical argument can be invoked to justify that the actual network behaviour should be closer to either
of the two bounds and (ii) geometrical averaging yields the same average value when derived from stiffness
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Fig. 7. Variation as a function of w of the Voigt and Reuss bounds for E1, E3 and G13 for a fibre volume fraction Vf = 0.20.



 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 
 

 

 

 

 

Fig. 8. Comparison of the geometrical averages of the bounds predicted by the model of Delincé and Delannay (‘‘model 1’’) and of this
paper (‘‘model 2’’) for E1, E3 and G13 The three rectangles in grey scale locate the experimental values. The dot-dashed curves are the
values of E3 and G13 for truss lattices, as expressed by relations (22) and (23).
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or compliance. The experimental values are represented in Fig. 8 by rectangles in grey scale. As anticipated,
owing to the triangulation brought about by the plates, the present model (model 2) is generally stiffer than
model 1 (except for E3 at w > 65� and for G13 at w > 55�). For E1 whereas the trends for the dependence on
w are remarkably similar for the two models, the predictions of model 2 are larger by a factor of about 4.
Still, the prediction of model 2 remains quite lower than the experimental value. For G13 the value predicted
by model 2 remains, up to w 6 40�, larger by a factor of 2–3 than the value predicted by model 1. A fair
agreement is found in this case between model 2 and experimental results. For E3 model 2 is stiffer than
model 1 by a factor of about 2 but the experimental results remain underestimated.

Renewed interest has recently arisen on the mechanics of sandwich-type panels with cores consisting of a
periodic assembly of struts (Evans et al., 2001; Deshpande and Fleck, 2001; Deshpande et al., 2001a; Wicks
and Hutchinson, 2001; Chiras et al., 2002). Such ‘‘truss lattice’’ panels can be designed to present optimum
stiffness to weight ratio. Deshpande et al. (2001b) have analysed the conditions under which pin-jointed
truss lattices can present a completely stretching-dominated deformation behaviour (i.e. full triangulation).



2278 F. Delannay / International Journal of Solids and Structures 42 (2005) 2265–2285
As the stiffness of such lattices corresponds to the maximum achievable stiffness for a fibre network, it is
instructive to compare the elastic constants predicted by models 1 and 2 with the elastic constants of a com-
pletely stretching-dominated truss lattice with the same volume fraction Vf. As reference for comparison, let
us consider a sandwich core consisting of a single layer of pyramidal truss lattice sandwiched between two
solid face-sheets at which the trusses are pin-jointed (the triangulation is thus provided by the face-sheets).
As demonstrated by Deshpande and Fleck (2001), the values of E3 and G13 for such a core express as
Fig. 9.
locates
E3

E
¼ V f sin

4w ð22Þ
and
G13

E
¼ V f

8
sin22w ð23Þ
(the same expressions apply for a tetrahedral truss lattice). For E3, the expression (22) does not depend
whether four trusses meet at each node on the face-sheets, like in pyramidal lattices, or only two trusses
meet at each node, like in interconnected fibre networks. For G13, the expression (23) for pyramidal lattices
apply for the case of two trusses meeting at each node only when the shear direction is parallel to one of the
two in-plane fibre directions. Expressions (22) and (23) for Vf = 0.2 are presented as dot-dashed curves in
Fig. 8. First, it can be noticed in Fig. 8b that the experimental value for E3 is larger than the truss lattice E3

value, which was anticipated to represent an upper bound. The reason is that the truss lattice model is based
on the hypothesis of perfect pin-jointing at the nodes. In actual fibrous networks, the fibres segments do not
behave like pin-jointed struts because free rotation at the nodes is prevented. In the case of E3, the stiffening
contribution due to the moments at the nodes increases when w decreases. As a result, for a network of
interconnected fibres, E3 does not tend to vanish when w tends towards zero, in contrast to the trend ex-
pressed by (22). Nevertheless, relations (22) and (23) may be considered as providing relevant estimates
of E3 and G13 for fully triangulated, stretching-dominated fibre networks, except at low w for E3 and at
high w for G13. Fig. 8 shows that, at high w, the predictions of the two models for both E3 and G13 are lower
than the predictions of the truss lattice model. At low w, model 2 predictions are close to the truss lattice
values and, for G13, both curves tend to agree with experimental results.

Fig. 9 presents the variation as a function of w of the bounds for the out-of-plane Poisson ratio m13 de-
rived from the two conditions (20) and (21) for Vf = 0.20 (only the lowest of the two upper bounds and
 4 
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Variation as a function of w of the bounds for the out-of-plane Poisson ratio m13 for Vf = 0.20. The rectangle in grey scale
the m13 value measured for the reference material.
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the highest of the two lower bounds are shown). The value of m13 measured for the reference material is
located in Fig. 9 in the form of a rectangle in grey scale. Obviously, the consideration of upper and lower
bounds is not as informative for the Poisson ratios as for the other engineering elastic constants because
these bounds span a very large range. Nevertheless, the curves predict that the possibility of a negative Pois-
son effect increases sharply as w decreases. The (largely negative) m13 value measured for the reference mate-
rial is found to be fully compatible with the model predictions.
4. Conclusion

The main objective underneath the present paper was to design a model that could account for two fea-
tures of random planar fibre networks: the negative Poisson ratio behaviour and the random triangulation.
Indeed, these features were not embedded in ‘‘model 1’’ developed by Delincé and Delannay (2004). The
‘‘model 2’’ proposed in this paper may be viewed as an extension in 3D of a 2D model for the elastic prop-
erties of honeycombs (Gibson and Ashby, 1997). This model can exhibit negative Poisson ratio behaviour
in the three principal directions. It can thus correctly represent the behaviour of materials made of entan-
gled fibres. The use of plates appears adequate for modelling the triangulation effect. However, the values of
a and c to be used for the size of the plates, which determines the degree of triangulation, cannot be deter-
mined a priori. Comparison with experimental data suggests that the choice a = a* and c = c* with a* and
c* defined by (3) and (4) is not unrealistic.

As expected, model 2 is generally stiffer than model 1. It follows that the predictions of model 2 for G13

appear to agree with the value measured for the reference material. This result is important because G13 is a
major parameter for the design of sandwich cores. However, no such agreement is demonstrated for the
predictions of E1 and E3 which remain significantly lower than experimental values. Nevertheless, although
fully quantitative agreement with experiment is not demonstrated, the model can provide clues for orienting
the design of the fibre orientation distribution that would provide the most adequate elastic anisotropy for
the aimed application.

A major difficulty arises from the very low w angles characterising the reference material. Obviously,
experimental data for random planar networks presenting higher average w angles should be obtained in
order to better assess the two models. Conversely, different hypotheses or additional phenomena should
be considered for accounting more accurately for the mechanisms governing the in-plane and out-of-plane
stiffness at low w. Improved models should be designed in which fibres do not cross one another but are in
contact along their external surface. These models should also account for the stiffening due to the possi-
bility of squeezing of a fibre between two other fibres, a phenomenon that cannot occur when fibres cross
one another along their symmetry axis. It should also be considered that a strain increment can cause some
fibres to create a new contact, a mechanism that can affect the value of the Poisson ratio.
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Appendix A. Influence of triangulation on the in-plane modulus E1

Fig. A.1 sketches the architecture of a random network of fibres presenting a low out-of-plane angle w.
Only 4 fibres segments meet at each node. These segments, which are assumed to be straight, form rings



zD 

(a) (b) 

lD 

 

Fig. A.1. (a) Sketch of the architecture of a random fibre network containing mostly hexagonal and triangular rings; (b) representation
of the network as a stacking of 2D nets of regular hexagons and triangles separated by a distance zD.
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more or less parallel to the plane of isotropy. The number of segments of which these rings are actually
made is variable. According to Gibson and Ashby (1997), in three-dimensional cellular structures, the num-
ber of edges per cell face is commonly close to 5.1. Hence, the fibre network is represented in Fig. A.1a as
consisting of a combination of hexagonal and triangular rings: hexagonal rings account for the contribution
of fibre bending to the in-plane compliance whereas triangular rings account for the contribution of trian-
gulation. As a first approximation, it may be considered that the in-plane elastic properties derive primarily
from the interconnections inside these rings, i.e. that the interconnections between rings in the x3 direction
play only a minor role. Hence, as suggested in Fig. A.1b, the in-plane modulus E1 of the actual structure
can be estimated using, as a model, a stacking of two-dimensional nets made either of regular hexagons or
of equilateral triangles, with constant distance L = lD between the nodes. For any given relative proportion
of hexagonal and triangular rings, the distance that separates these nets in the x3 direction can be derived
from the actual network fibre volume fraction, Vf. The values of the in-plane moduli E1H and E1T for 2D
nets containing only hexagons or only triangles, respectively, can then be calculated using the mechanics of
honeycombs (e.g. Gibson and Ashby, 1997). One obtains
E1H

E
¼ 9

4
V f

1

l2
ðA:1Þ
and
E1T

E
¼ 3

4
V f : ðA:2Þ
Using, as for the reference material, Vf = 0.2 and l = 10, relation (A.1) yields E1H/E = 4.5 · 10�3 and rela-
tion (A.2) yields E1T/E = 150 · 10�3. These values are, respectively, much lower and much higher than the
value E1/E � 35 · 10�3 that was experimentally measured by Delannay and Clyne (1999). It may thus be
concluded that, in order to quantitatively predict the experimental values, the model must involve some
degree of triangulation.
Appendix B. Derivation of the compliance matrix components Sij

The analysis procedure being identical for the two models of Figs. 4 and 5, it will be illustrated only for
the case of the model of Fig. 5. As represented in Fig. B.1, the elastic response of the RVE under normal
stresses r11, r22, or r33 can be fully characterised by considering only half of the segment AB together with a
plate of size aL/2 · cL/2 · t00L/2. A simple force oriented along either of the three reference axes is applied
on the middle of the fibre. Let us denote this force pi = Pxi. By symmetry, no rotation at node A can occur
for loading along x1. However, for loading along x2 or x3, the moment at the node has a component per-
pendicular to the plate, which induces an in-plane deformation of the plate. We neglect the effect of this



 

 

 
 

 

 

 

 

 

 

 

Fig. B.1. Representative element for characterising the elastic behaviour of the model of Fig. 5 under normal stresses r11, r22 or r33.
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moment and assume the absence of any rotation at the node for this configuration. Neglecting the contri-
bution of shear, the relative displacement of the two nodes A and B at the ends of the fibre segment of
length L is the sum of an axial stretching va and a bending deflection vb. Both displacements can easily
be derived from elastic beam mechanics. The displacement Dfi in direction xi of the load is obtained as
the scalar product
Dfi ¼ ðva þ vbÞ � xi: ðB:1Þ

When loading along p2 or p3, the deformation of the two plates in the RVE also contributes to the defor-

mation of the RVE. Even though we assume no in-plane rotation at the node, the plate deformation is not
uniform. However, we approximate this deformation as equal to the deformation epij of the plates under a
uniform stress. The corresponding contributions Dpi to the relative displacement of the cell boundaries are
thus easily obtained. For example, when loading the model of Fig. B.1 along p2,
Dp2 ¼ ep22aL ¼ 4Pa
Et00cL

: ðB:2Þ
Using (9) and (17), we have
t00c ¼ p

al2
: ðB:3Þ
Hence
Dp2 ¼
4Pl2a2

EpL
¼ 16l4

3pE
P
L
3

4

a2

l2
ðB:4Þ
and
Dp3 ¼ �mep22cL ¼ �m
16l4

3pE
P
L
3

4

a2c

l2
: ðB:5Þ
Finally, the compliance tensor components Sij with i, j = 1, 2 or 3 are obtained as
Sii ¼
1

Ei
¼ Dfi þ Dpi

riiX i
ðB:6Þ
and
Sij ¼ � mij
Ei

¼ Dfj þ Dpj

riiX j
; ðB:7Þ
where Xi is the size of the RVE in direction xi (refer to Figs. 4 and 5). The stress components rij are obtained
from the pi and the area of the corresponding RVE faces. The ensuing Sij expressions are listed in Tables 1
and 2.
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For obtaining the shear compliances Sii with i = 4, 5, or 6, the response of the network of Fig. 5 under
shear stresses s12, s13 and s23 can be characterised using the three representative elements sketched in Fig.
B.2. For symmetry reasons, the middle of the fibres is under simple load (no bending moment) and no node
rotation occurs under the shear stresses s12, s13 (Fig. B.2a and b). We neglect the elastic rotation of the node
that can occur in the plane of the plate under s23 (Fig. B.2c). We adapt here for a 3D periodical model the
procedure used by Gibson and Ashby (1997) for deriving the in-plane shear components of the stiffness ma-
trix of a 2D honeycomb.

Equilibrium allows deriving the force on the middle of the fibres as the sum of two forces denoted pi =
Pixi and qij = Qijxj. Let us consider for example Fig. B.2a. The shear stress can be expressed either as
Fig. B
s13 (b)
s12 ¼
P 1

L2 cosw cos hðcþ sinwÞ
ðB:8Þ
or as
s12 ¼
Q12

L2ðaþ cosw sin hÞðcþ sinwÞ
: ðB:9Þ
Hence
Q12 ¼
aþ cosw sin h
cosw cos h

P 1: ðB:10Þ
(a)

(b)

(c)

.2. Three representative elements used for characterising the elastic behaviour of the model of Fig. 5 under shear stresses s12 (a),
, and s23 (c).
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The same procedure can be followed for deriving Q13 and Q23.
The relative displacement of the middle of the fibres with respect to the node (i.e. over a length L/2) is the

sum of a bending deflection vbij and an axial stretching vaij, which can be derived from elastic beam
mechanics.

The displacement vbij of the middle of the fibre causes a rotation /n
bij of the node around axis xk (with

k5i, j). In vectorial form, this rotation can be expressed
F

/n
bij ¼ ðu� vbijÞ � xk: ðB:11Þ
The bending of the two fibres also results in a rotation /p
ij of the middle of the edge of the plate with respect

to the middle of the line connecting the two points of application of the loads (middles of the two fibres
supporting the plate). This rotation can be expressed as
/p
ij ¼ /n

bij

si
X i

; ðB:12Þ
where Xi is the size of the RVE in direction xi and si is the size of the plate in direction xi, which is equal to
aL or cL depending on the direction. /p

ij is zero when si = 0 i.e. when the plate is perpendicular to axis xi.
Hence, due to the bending of the fibres, the middle of the plate shifts with respect to the middles of the fibres
over a distance
Dbij ¼ /n
bijsj � /p

ijX j ¼ /n
bij sj � si

X j

X i

� �
: ðB:13Þ
One of the two fibres elongates while the other contracts. As represented in Fig. B.3, the result is a rotation
of the plate by an angle /p

aij plus a displacement of the node by a length Dn
ai. /

p
aij and Dn

ai can be derived,
from consideration of Fig. B.3, as
/p
aij ¼

2ðvaij � xjÞ
X i

ðB:14Þ
and
Dn
ai ¼ vaij � xi: ðB:15Þ
p
p

ig. B.3. Rotation and displacement of the plate as a result of the bending and elongation/contraction of the two fibres.
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The total displacement Daij of the middle of the plate (with respect to the middle of the fibres) resulting from
the axial elongation of the fibres is then obtained as
Daij ¼ /p
aijsj þ Dn

ai: ðB:16Þ
Figs. B.2a and b indicate that the deflection of the plate under the shear stresses s12 or s13 adds a further
contribution to the deformation of the RVE. For example, under s12 (Fig. B.2a), the deflection Dp

12 of the
middle of the plate with respect to the node writes (neglecting the contribution due to shear)
Dp
12 ¼

2Pa3

ELct003
ðB:17Þ
which, using (9) and (B.3) translates into
Dp
12 ¼

8Pl4

3pEL
3a4c
4pV f

: ðB:18Þ
In the case of a shear stress s23 (Fig. B.2c), the plate undergoes no bending but only in-plane shear (that
may be non-negligible in comparison to the other contributions for certain values of w and h). The displace-
ment of the middle of the plate with respect to the node writes
Dp
23 ¼

2Pc
lLat00

; ðB:19Þ
where l is the shear modulus of the fibres. Using l = 3E/8 allows deriving
Dp
23 ¼

8Pl4

3pEL
2
c2

l2
: ðB:20Þ
Finally, the shear compliances Sii with i = 4, 5 or 6 are obtained as, for example
S00
66 ¼

1

G12

¼ c12
s12

¼ 2ðDb12 þ Da12 þ Dp
12ÞLX 00

1X
00
3

PX 00
2

: ðB:21Þ
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