Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nEm SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

EILSEVIER International Journal of Solids and Structures 42 (2005) 2265-2285

Elastic model of an entangled network of interconnected
fibres accounting for negative Poisson ratio
behaviour and random triangulation

Francis Delannay *

Département des Sciences des matériaux et des procédés, PCIM, Université catholique de Louvain, Place Sainte Barbe 2,
B-1348 Louvain-la-Neuve, Belgium

Received 18 March 2004; received in revised form 14 September 2004
Available online 27 October 2004

Abstract

A model is designed for predicting the elastic constants of a random planar network of interconnected fibres while
accounting for two features of such networks: negative Poisson ratio behaviour and random triangulation. The model
is based on a periodic network involving both plates and fibres segments, with possibility of reentrant cell shapes. The
plates are intended to represent the effect of triangulation. Bounds for the elastic constants are obtained by calculating
volume weighted averages of the elastic properties for periodic networks characterised by a uniform distribution of in-
plane fibre orientations. Predictions are derived for the dependence of the in-plane Young’s modulus, out-of-plane
Young’s modulus, and in-plane shear modulus on out-of-plane fibre orientation for a fibre volume fraction of 0.20. These
predictions are assessed by reference to experimental results for transversely isotropic networks, with very low average
out-of-plane fibre orientation, made by sintering compressed mats of stainless steel fibres. A comparison is also made with
the predictions of a model for truss lattice core, which is liable to represent the case of a fully triangulated network.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Solid networks made of an assembly of interconnected fibres tightly bonded at the fibre contact points
constitute a particular type of open-celled “cellular’” material. In the case of metallic fibres, interconnected
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Fig. 1. Orientation of a fibre segment with respect to the co-ordinate axes. For a random planar network, plane (xy, x;) is taken as the
plane of transverse isotropy (“in-plane” directions) and direction x5 as the isotropy axis (“‘out-of-plane’ direction).

networks with controlled fibre volume fraction and orientation distribution can be prepared by sintering
felts of fibres. Such metallic fibre networks could find application as core material for lightweight sandwich
plates combining both structural and heat transfer properties. For a given fibre volume fraction, V5, these
properties strongly depend on the anisotropy of the fibre orientation distribution. Faithful models for pre-
dicting the elastic behaviour of networks of interconnected fibres are needed for the design of sandwich
cores with optimised properties. The potentially very high anisotropy and the fact that no elementary pol-
yhedron constituting a ““cell” can be defined render fibre networks quite different from cellular solids in
general.

The model developed in the present paper is constructed and assessed by reference to experimental re-
sults for transversely isotropic, random fibre networks made by sintering compressed mats of 12 um diam-
eter fibres of stainless steel 316L with ;= 0.20 (a product of N.V. Bekaert S.A., Belgium). Measurement of
the whole set of five independent elastic constants ensuing from the transversely isotropic symmetry of this
reference material was reported by Delannay and Clyne (1999). As sketched in Fig. 1, we define the orien-
tation of a fibre segment by the spherical coordinate angles i and 6 with respect to a right handed Cartesian
system of axes. Plane (x1, x,) is the plane of transverse isotropy of the network (“in-plane” directions) and
direction x3 is the axis of symmetry (“out-of-plane” direction). Observation by scanning electron micros-
copy indicated that, in the considered reference material, (i) the distribution of the “out-of-plane” angles
¥ is limited to small angles (77% of the fibres were found to be in the range 0° < y < 10°) and (ii) the aver-
age distance L between two nodes along a fibre is somewhat less than 10 fibre diameters D (Delincé and
Delannay, 2004). Denoting E the Young’s modulus of the fibres, the non-dimensional in-plane modulus
E,/E was ~35x 1077, the out-of-plane modulus Es/E was ~1.1 x 107> and the in-plane shear modulus
Gis/E was ~12x 107 (Delannay and Clyne, 1999). Strikingly, a quite large negative Poisson ratio
vi3 =~ —1.7 was measured in the out-of-plane direction.

Recently, Delincé and Delannay (2004) presented a model for predicting the dependence of the stiffness
matrix, C; or compliance matrix, S; (as defined by Nye, 1985) of random planar fibre networks on fibre
volume fraction and fibre orientation distribution. The elastic behaviour was analysed by considering
the periodic network sketched in Fig. 2. This network involves only rings of six interconnected fibre seg-
ments. All segments have the same length and exhibit only two out-of-plane orientations +y and —y
and two in-plane orientations 6, and 6,. That model is unable to account for the possibility of negative
Poisson ratio behaviour, which is a major feature of the tests carried out on the reference material. Indeed,
although other structural mechanisms can bring about negative Poisson ratio (Rothenburg et al., 1991;
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Fig. 2. Periodic network used in the model of Delincé and Delannay (2004).

Milton, 1992), negative Poisson ratio in cellular solids is commonly considered to result from reentrant cell
shapes (Schajer and Robertson, 1974; Kolpakov, 1985; Lakes, 1987, 1991; Friis et al., 1988; Evans et al.,
1994; Gibson and Ashby, 1997; Overaker et al., 1998a,b).

Although the trends revealed by the model of Delincé and Delannay (2004) appeared sound from the
mechanical point of view, the model predictions were found to underestimate the elastic constants meas-
ured for the reference material. This too large compliance was ascribed to the fact that the model did
not consider the presence of triangles formed by three mutually intersecting fibres. Such a triangulation ef-
fect increases the network stiffness because bending of the fibres is prevented in the direction parallel to the
plane of the triangles. Intuitively, the degree of triangulation is expected to be larger when fibres are more
parallel to one another, i.e. when the average out-of-plane angle s is smaller. In Appendix A, a simple
model is used for demonstrating that, indeed, the magnitude of the in-plane modulus E; measured for
the reference fibre network cannot be accounted for without considering the effect of triangulation.

The objective of the present paper is to develop a new model liable to circumvent the limitations of the
model of Delincé and Delannay (2004). This new model involves (i) the possibility of reentrant shapes that
could bring about negative Poisson ratio behaviour, and (ii) the presence of plates intended to reproduce
the effect of triangles of fibres. As for the model introduced by Delincé and Delannay (2004), bounds for the
components of the stiffness matrix, C; or compliance matrix, S;; are derived using Voigt and Reuss aver-
aging procedures. The results of the two models are compared to predictions for truss lattices and evaluated
with respect to the experimental data for the reference material.

2. Model
2.1. Geometry of the periodic model networks

Fig. 3aillustrates the architecture of a model network of fibres designed for exhibiting the requested behav-
iour. The difference with respect to the network of Fig. 2 is that the network combines rings of 6 fibre segments

together with equilateral triangles of 3 fibre segments. The segments forming the triangles are parallel to the
plane of transverse isotropy (i = 0) whereas the other segments present two symmetrical out-of-plane
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Fig. 3. (a) Network combining rings of 6 fibres segments and equilateral triangles of 3 fibres segments. The segments forming the
triangles are parallel to the plane of transverse isotropy (¥ = 0) whereas the other segments present two symmetrical out-of-plane
orientation angles +/ and — and three different in-plane orientation angles; (b) same network with triangles of fibres substituted by
triangular plates; (c) simplified model obtained by merging two triangular plates to form a rectangular plate.

orientation angles +y and —. Three different in-plane orientation angles 0, 0, and 05 (not specified on the
figure) are given to the three pairs of segments meeting at the corners of the triangles. All fibres have the same
diameter, D. The segments forming the equilateral triangles have a length, L. which differs from the length, L,
of the other segments. The ratio L/L is an adjustable parameter allowing the tuning of the degree of trian-
gulation in the network. It can easily be realised that, in addition to accounting for triangulation, the network
of Fig. 3a can present reentrant shapes liable to bring about negative Poisson ratio behaviour.

Fig. 3b presents a similar network design in which each group of three fibre segments forming a triangle
has been substituted by a triangular plate. This network presents essentially the same mechanical properties
as the original one if the plate thickness, 7, is chosen to be such that the plate volume is equal to the volume
of the three original fibre segments (i.e., 7 = v/31D? /Ly). Indeed, as for triangles of fibres, only stretching
and shearing contribute to the in-plane deformation of plates, whereas bending governs the out-of-plane
deformation (the shearing contribution being negligible if the ratio L./T is large enough).
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Fig. 4. First type of periodic model used for predicting the elastic properties of a random planar network of interconnected fibres.

The analysis of the elastic behaviour of such a periodic network containing triangular plates with two dif-
ferent orientations and fibres segments with three different in-plane orientation angles 6 is fairly complex. In
order to simplify this analysis, we propose to substitute this network by a network in which pairs of triangular
plates with different orientations are merged to form a rectangular plate, as represented in Fig. 3c. In this way,
the fibre segments present only two different in-plane orientation angles 0 (as for the model of Fig. 2). As de-
tailed in Sections 2.2 and 2.3 hereafter the length and width of the plates can be chosen such as to comply with
the spatial distribution of the nodes in the network whereas their thickness can be chosen such as to comply
with the solid volume fraction V4. The basic assumption is that the mechanical behaviours of the networks of
Fig. 3b and c are qualitatively similar. It will be shown that, indeed, the dependence on / of the elastic prop-
erties predicted for a model based on Fig. 3c follows a similar trend as for the model of Fig. 2. In order to allow
triangulation to operate in different plane directions, two different periodic model networks based on Fig. 3¢
have to be considered (a preliminary report on this modelling approach was given by Delannay, 1998).

The first periodic model network to be considered is sketched in Fig. 4. The model directly derives from
Fig. 3c: it consists of a periodic arrangement of fibre segments of length L oriented along the four directions
(+0,+y), (+0,—y), (—0,+y) (the latter being the orientation of the fibre segment specified in Fig. 4), and
(—0,—). These fibre segments are connected to square plates of size (aL x aL x t'L) perpendicular to axis
x3. The values of 0 and Y may be chosen anywhere in the ranges —n < 0 < 7 and 0 < < n/2. The major
feature of this periodic network is that it expands along x; under tension loading along x, when —n < 0 <0
and under tension loading along x; when 0 < —zn/2 or 0 > ©/2: negative Poisson ratio behaviour is thus al-
lowed in the out-of-plane direction (as observed for the reference material). The values to be chosen for the
size parameters a and ¢’ of the plates are discussed in Sections 2.2 and 2.3 hereafter. Obviously, the larger a
and ¢/, the larger the triangulation contribution to the network stiffness.

In order to account for other possible triangulation planes, it is necessary to consider also the second
type of model illustrated in Fig. 5. It consists of the same regular arrangement of fibre segments of length
L oriented along the four directions (+6,+y), (+0, —y), (—0,+) (the latter being the orientation of the
fibre indicated in Fig. 5), and (—0, —), but these fibre segments are now connected to rectangular plates
of size (aL x cL x t" L) perpendicular to axis x;. In this case, the values of 0 and y may be chosen anywhere
in the ranges —m/2 < 0 < n/2 and —n/2 <y < n/2. Referring to Fig. 5, one notices that the network
expands along x; under tension loading along x, when —n/2 < 0 <0 and under tension loading along x;
when —n/2 < <0. The plates account for triangulation in the plane perpendicular to x;. The values to
be chosen for the size parameters a, ¢, and ¢’ are discussed in Sections 2.2 and 2.3.

As detailed in Section 2.5, the procedure will consist in calculating the bounds for the elastic properties
of a “composite” combining periodic networks such as illustrated in Figs. 4 or 5 with i and 0 distributed in
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Fig. 5. Second type of periodic model used for predicting the elastic properties of a random planar network of sintered fibres.

their admissible ranges. As the original periodic networks present orthotropic symmetry, the results of this
averaging procedure keep complying with orthotropy. In order to retrieve the transverse isotropy of the
actual networks, these results will then be averaged with respect to all rotations around the x5 axis. Finally,
in order to account for the different planes in which triangulation can exist, averages will be taken of the
results for plates perpendicular to xi, x» and x3. As x; and x, are equivalent, this means that the model of
Fig. 5 will be given twice the weight of the model of Fig. 4.

2.2. Plate size parameters a and ¢

As proposed by Delincé and Delannay (2004), the architecture of any particular random planar fibre
network may be characterised by a node distribution function Fy; _geay (Lss, 0,1) which expresses the prob-
ability that a fibre segment originating from a particular node meets another fibre at another node located
at a distance between Lg and Lg + dLg in a direction included within the solid angle between (0,y) and
(0 + do,y + dy). For constructing the model networks, it makes sense to choose as length L of the fibre
segments the average distance between two nodes connected by a fibre segment in the actual network. This
average can be calculated as

n/2
/ / / Flarg aoay (Les, 0, ) Les cos Y dLg, dO dyp. (1)
Le=0 Jy=0 Jo

The distribution Fgy(y) of the relative orientations of pairs of nodes connected by a fibre segment is ob-
tained as

Fdl// / / FdL‘\ do dy Lfs, 0 l//)LfS COS 170 des do. (2)
L= 0
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Fig. 6. Unit cell representing the average distribution of the nodes in the network.

Fay () is similar, but not exactly identical, to the fibre orientation distribution. Indeed, in actual networks,
fibres are not perfectly straight between nodes and the contact points constituting the nodes are not along
the fibre axis.

In order to find the ratio a/c of the plate sizes which best complies with the architecture of the actual
random planar network to be modelled, we propose to determine the parameters, denoted ¢*L and ¢*L,
of a body-centred tetragonal lattice which would best represent the distribution of the nodes in the network.
Let us, for this purpose, locate the origin of the coordinates system of axes at a particular node, as sketched
in Fig. 6. The eight most probable positions of the nodes closest to this particular one are at the apexes of a
tetragonal unit cell, the parameters, a*L and ¢*L, of which are equal to twice the averages of the projec-
tions, on the three coordinate axes, of a fibre segment of length L originating from the node at the origin.
For a transversely isotropic network, a* and c¢* are obtained as

w2 (w)2 () cosBcosydfdy 4 72
=9 y=0 Jo=01 d¥ 4 . ) 3
’ uffo L/éde,(x//)dodlp - /H ay(Y) cos Y dys )
and
RERELCULIL / " By ) sin v .
oo Fap () dy veo :

As only 4 fibre segments (i.e. two fibres crossing one another) meet at the node located at the centre of the
unit cell, the latter would be connected to only four among the eight nodes of which the average positions
are at the apexes of the unit cell. It can be noticed that, with the definitions (3) and (4) of a* and c*, the
distance between the origin and the unit cell apexes is not equal to L.

The parameters ¢* and ¢* thus depend only on the distribution Fg4(1/). The simplest case consists in con-
sidering that all fibres have the same orientation ¥ (i.e. Fqy () = d(y) where 6(y) is the Dirac function). In
that case, relations (3) and (4) yield

. 4
a = cosy (5)
and
¢ =2siny. (6)

A more realistic case would be a network in which the distribution Fy,(1) is uniform from iy =0 up to a
maximum ¥ = i, beyond which it is zero. Relations (3) and (4) yield in that case
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. 2 sin 2/,
“= msiny,, (wm + 2 ) (7)
and
¢t =siny,,. (8)

a* and c* can be derived in a similar way for any other distribution Fq, ().

Two characteristics of fibre networks can be quite easily measured experimentally: the fibre volume frac-
tion Vy and the fibre orientation distribution, which we can take as representative of Fy,(y) (Delincé and
Delannay, 2004). In contrast, it is very difficult to measure the average distance L between two nodes. How-
ever, if one assumes that the fibre cross sections are circular with constant diameter, D and that the fibre
segments are straight between nodes, L is a function only of V;and Fy,(). Indeed, each unit cell repre-
sented in Fig. 6 contains in average four fibres segments of length L. Hence, neglecting the volume of
the node itself, the fibre volume fraction writes

nD? 1
Ve=4L 4 oo 9)

D 1 Via2c*
Pt il (10)

The dependence of / on Fy,(y) expresses through a* and c*.

In order to get the best correspondence between the periodic model networks of Figs. 4 and 5 and the
actual network architecture, it makes sense to take a = ka* and ¢ = kc¢* with the same proportionality fac-
tor k. The next issue is the choice of the value to be given to k in order to correctly represent the degree of
triangulation in the network: the larger the factor k, the larger the triangulation, hence the larger the net-
work stiffness. In the lack of pertinent a priori argument for orienting the choice of k, k remains an adjust-
able parameter to be identified a posteriori by comparing model predictions to experimental data. Although
the model of the present paper can be developed for any value of k (except for the limitation mentioned in
Section 2.3), all computational results presented in the present paper were obtained with k = 1, i.e. by tak-
ing a =a* and ¢ = c*.

or

2.3. Plate thickness parameters t' and t"

The thickness parameters ¢’ and ¢’ can be derived by considering in Figs. 4 and 5 the representative vol-
ume elements (RVE) of size (X1 x X’2 x X’3) and (X”1 x X”2 x X"3), respectively, around the fibre segment
AB. In Fig. 4, the volume Vi (0, ) of the RVE writes

Vive(0,%) = L*(a + cos s sin 0)(a + cos i cos 0) sin y, (11)
whereas, in Fig. 5, the volume Vi of the RVE writes
Vive(0,0) = L*(a + cos  sin 0)(c + sin /) cos i cos 0. (12)

The actual random network behaves like a “‘composite” network combining all networks with angles 0 and
Y distributed according to the actual fibre orientation distribution. The volume fraction V' of solid can thus
be calculated by noticing that each RVE contains one fibre segment and 1/4 of the volume of a plate. For
example, for the network of Fig. 5,

Ve =

1" 3 2
1 (t acl’ wD L> ’ (13)

Vo \ 4 4
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where (Vgyp) denotes the average RVE volume in the composite network. In the case of random planar
symmetry, this average volume can be derived from the orientation distribution function Fy, () as

vy — l;f*n/Z an/z—n/z Vive (0, W) Fay () dOdy
(Vrve) = - ) .
vy Jonpp Fay () dOdy

(14)

For the network of Fig. 4, the average RVE volume (V'ryg) is obtained using a similar relation as (14),
except that the integration is then carried out over the ranges —n < 0 < m and 0 < < n/2. It may be
verified that, combining (11) or (12) with (14), the same result is obtained whatever the fibre orientation
distribution F(y):

(Vrve) = (Vrve) = %L3a2(:. (15)

The model breaks down if a (=ka*) and ¢ (=kc*) are taken too small: indeed, combination of (13) and (15)
shows that ¢/ and ¢” decrease with decreasing k and they should be given a negative value below a certain
value of k.

In the following of this paper, we consider only the choice ¢ = a¢* and ¢ = ¢* (k = 1). For this particular
case, relations (10), (13), and (15) yield, for the network of Fig. 4,

= Ve (16)
and, for the network of Fig. 5,
= Via. (17)

Combining (16) and (17) with (9) shows that, whatever the distribution Fy,(y), the volume of each plate is
then equal to the volume of 4 fibre segments of length L.

2.4. Expression of compliance matrix components S

The method used for the analysis of the elastic behaviour of the periodic networks of Figs. 4 and 5 is an
extension to the 3D case of the method used by Gibson and Ashby (1997) for the analysis the elastic prop-
erties of 2D honeycombs (the present paper is limited to the study of the elastic behaviour but the two
model networks of Figs. 4 and 5 could also be used for evaluating the resistance of a random fibre network
to buckling or yielding).

As the two periodic models present orthotropic symmetry, their compliance matrix involves nine inde-
pendent components S;; (Nye, 1985), which will be denoted S;j and SZ for the cases of Figs. 4 and 5, respec-
tively. Analytical expressions for these components have been derived by considering:

(i) for the fibre segments, the deformations in bending and stretching but not in shearing;
(i1) for the plates, the in-plane deformations in stretching and shearing and the out-of-plane deformations

in bending but not in shearing;

(i) no relative rotation of the fibres and plates at the nodes.

Accounting for stretching of the beams and of the plates was necessary in order to avoid obtaining infinite
stiffness at the limits of the 6, iy ranges where fibres and plates align with the loading directions. Using rela-
tions (7)—(12) together with relations (18) and (19), it may be verified that, for networks with volume frac-
tion V; < 0.2, the aspect ratio of the fibres and plates is always large enough for neglecting shearing in
comparison to bending for the transverse deflection of the beams and for the out-of-plane deflection of
the plates. Approximation (iii) may be the most questionable as, if the contact nodes are not sufficiently
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welded (which depends on the sintering conditions used for consolidating the network), the stiffness of the
connections between the fibres can be not large enough as to prevent some relative fibre rotation.

The expressions for the S;, and SZ are given in Tables 1 and 2. The procedure for deriving these expres-
sions is presented in Appendix B. For symmetry reasons, the elastic response of the models under tension or
compression in directions parallel to the reference axes are completely specified by the behaviour of the rep-
resentative volume element (RVE) defined around the fibre segment AB in Figs. 4 and 5. The computation

Table 1

. . . . . 4
Non-dimensional compliance matrix components S;E (using 4 = 1/

) for the periodic model network of Fig. 4

a?

S11E = A(a + cos  sin 0) siny(a + cos y cos 0)~ [ 3o — (1 = )coszxpcosz()]
SHLE = -4 sim//{v%‘l%:+ (1 412) cost//sm()cosO]
S'3E = —A(a + cosy sin 0) cosz//sinz//cos()<l 7ﬁ)
ShyE = A(a + cosy cos 0) sin (a + cos y sin 0) " [1 + %‘,%Z - (1 - ﬁ)COSZIIISiHZO}
Sy E = —A(a + cosy cos 0) cosd/sinl//sin()(l 7%)

Si4E = A(a + cos y sin 6)(a + cos i cos 0) (sin ) ! {1 — (1 412) sin z//}

S,GGE:A(a-&-cost//cos@)sml// a*cos lﬁ(cos@—sm@) 3 22+ 32
a -+ cosysin0 (a + cosy sin 0)? = 4l
5 . . : 2/ cin2
" coszx//coszf) n cos“y cos 0 sin 0(2a + cos y sin 6) n a(a + cosy sin O)cos™ysin 0:| }

a+ cosycos 0 (a+ cos ycos 0)?

(@ 4 cosy sin 0) sin

SWE=S"E=4
a4 53 a+ cosiycos O

) 3a® 3
a” + —— |sin 2y + cos 0 cos Y(2a + cos O cos i) +

ala + cos iy cos 0)cos?ysin’0
47erc 4]

sinzlp

Table 2
Non-dimensional compliance matrix components S:;E (using 4 = %) for the periodic model network of Fig. 5

8" E = A(a + cos sin 0)(c + sin ) (cos i cos 0) ! [1 - (1 - ﬁ)coszwcosz(}]
SHE =—4 (1 ) (¢ + siny)cosy cos O'sin O

STE = —A(l )( + cos s sin ) siny cos y cos 0

SHE = A(c + siny) cosy cos O(a + cos  sin 0) ! {1 +3 3 12 — (1 - ﬁ)coszl//sinz(?}
S5 E = —A cos cos 0 [v 3ac | (l — 4'7) cos i sin Y sin 6}

SE = A(a + cosy sin 0) cosy cos 0(c + sin )~ { —i - (1 - &) sinzw]
0
StE =4 (c Zsf(l:{))scl;;ﬁ Zos { jZVC + i [coszl// + 2acos sin 0 + a(a + cos  sin 0)tan?0] }
+ cos s sin 0) cos  cos 0 3 3 . . . c(c + siny)tan?y
" E— A (a 2 o 2 2 2
855 TSy c+ v + Ve cos“ysin”6 + sin(2¢ + siny) + 020

9 (a4 cosysinf) cosyycost | (ccosysind — asin l//)2 23
SUE=4 =

¢+ siny (a + cosy sin 0)?

. . . . )
« |costysin0 + sin y(2c + siny) cos i sin n c(c + siny)sin 1//:| }

a-+cosysin0 (a + cos sin 0)?
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of the shear components S, S5, S, S, Sss and S, requires considering twice as large RVEs involving a
pair of fibres. Using these expressions for §;; and S}, the components C;; and C7, of the stiffness matrices are
obtained using the standard procedure for the inversion of the comphance matrix (Nye, 1985).

2.5. Computation of Reuss and Voigt bounds

Following common practice (e.g. Mura, 1982; Gommers et al., 1996) and similarly as done by Delincé and
Delannay (2004), bounds for the elastic constants of a random planar fibre network are obtained by calcu-
lating the Reuss and Voigt bounds for the elastic constants of a “composite’” network made by combining
periodic networks of the type of Figs. 4 and 5 presenting uniform distributions of the in-plane angle 0. In order
to simplify computations, we have limited ourselves to the hypothetical case where all fibres have the same
orientation v (i.e. Fqy() = 6()). This case allows to best capture the influence of the fibre orientation. In
order to account for the volume of the nodes, the effective length along which the fibre segments represented
in Figs. 4 and 5 deform has been taken in the computations as equal to L—D rather than to L.

The procedure for obtaining the Reuss bound starts by computing the volume weighted averages, SR
and SR, of the compliance matrix components S and S For example, in the case of the model of F1g

17

5, these averages write
0 Ve (0,0)S5(0, =) + Ve (0, =) S5 (0, —y)] d6
v fn_/z,n/z V;/{VE 0 lp) V;/{VE(H’ _l//)] do

Secondly, as the compliance matrices Sg.{ and S;;R correspond to networks with orthotropic symmetry, the
Reuss bounds for the five independent stiffness components of a transversely isotropic network are derived
by averaging the Sg,{ and Sg.R components with respect to all directions perpendicular to the x; axis. The
relations to be used for that purpose were given in Table 2 of the paper of Delincé and Delannay
(2004). Finally, an average is taken of the stiffness matrix components calculated for periodic network mod-
els with plates perpendicular to x;, x, and x3. As x; and x, are equivalent, the weight to be given to the
model of Fig. 5 is twice the weight to be given to the model of Fig. 4. Hence, we take, as the best repre-
sentative Reuss bound, the average matrix
SR 28R

SE = % (19)

The procedure for obtaining the Voigt bounds of the elastic constants is similar: it involves (i) the com-
putation of the volume weighted averages, C’y and C”V of the nine components of the compliance matrices
C;; and C7; (derived from S}, and S}, using the standard procedure for the inversion of the compliance ma-
trlx) (i1) the translation of these 9 C')’ and C"v components into the five components complying with trans-
verse isotropy and (iii) the computation of C ;; similarly as in (19). Finally, the Voigt bounds S of the
compliance matrix are derived from the matrix C‘j’ by matrix inversion.

The Reuss and Voigt bounds EX, EX, and GY, and EY, EY, and G}, are directly obtained from the bounds
Sll.} and S?; with i =j. The bounds for the Poisson ratios vi» and v;3 are somewhat more complex as they
derive from the fact that the two following conditions must be satisfied simultaneously (e.g. Gommers
et al., 1996):

A \/(S,'f- — 8i)(S); = Sy) <8y < \/ $i)(Sj; = Si) (20)

(18)

and

Sy — \/(S,-,- —SY)(S; —S}) <S8y <8y + \/ ii -8 (21)
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3. Results and discussion

Fig. 7 presents the variation as a function of y of the Voigt and Reuss bounds for E|, E5 and G5 for a
fibre volume fraction V= 0.20. The overall behaviour is strikingly similar to the results obtained by Del-
incé and Delannay (2004) using the model illustrated in Fig. 2. E; exhibits a broad maximum in the range
10° < < 50° and a sharp decrease when s increases above 70°. E5 presents very low values at low y and
increases monotonously with s to reach a wide maximum when  exceeds 45°. G5 is predicted to present a
wide maximum in the range 20° < < 50°. As shown for example by Gibson and Ashby (1997) or Ashby
et al. (2000), G5 is the most important elastic constant to be considered for application of fibre networks as
core of sandwich structures. However, as sandwich cores should also have sufficient transverse stiffness, i.e.
sufficient E3 the optimum design value of y would presumably be larger than 40°.

Fig. 8 compares the predictions of the model of Delincé and Delannay (2004) (denoted “model 1”’) and
of this paper (denoted “model 2”°) for E|, E3 and G;3. For this comparison, the curves presented for the two

models are the geometrical averages of the two calculated bounds, e.g. EX¥* = /E\“® ER*" _ Geometrical
averages can be considered as most representative of the predictions because (i), in both models, no geo-
metrical argument can be invoked to justify that the actual network behaviour should be closer to either
of the two bounds and (ii) geometrical averaging yields the same average value when derived from stiffness
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Fig. 7. Variation as a function of s of the Voigt and Reuss bounds for E;, E5 and G,; for a fibre volume fraction V;=0.20.
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Fig. 8. Comparison of the geometrical averages of the bounds predicted by the model of Delincé and Delannay (“‘model 1”) and of this
paper (“model 27) for E|, E5 and G5 The three rectangles in grey scale locate the experimental values. The dot-dashed curves are the
values of E3 and G,; for truss lattices, as expressed by relations (22) and (23).

or compliance. The experimental values are represented in Fig. 8 by rectangles in grey scale. As anticipated,
owing to the triangulation brought about by the plates, the present model (model 2) is generally stiffer than
model 1 (except for E5 at y > 65° and for G5 at > 55°). For E| whereas the trends for the dependence on
 are remarkably similar for the two models, the predictions of model 2 are larger by a factor of about 4.
Still, the prediction of model 2 remains quite lower than the experimental value. For G the value predicted
by model 2 remains, up to < 40°, larger by a factor of 2-3 than the value predicted by model 1. A fair
agreement is found in this case between model 2 and experimental results. For E3 model 2 is stiffer than
model 1 by a factor of about 2 but the experimental results remain underestimated.

Renewed interest has recently arisen on the mechanics of sandwich-type panels with cores consisting of a
periodic assembly of struts (Evans et al., 2001; Deshpande and Fleck, 2001; Deshpande et al., 2001a; Wicks
and Hutchinson, 2001; Chiras et al., 2002). Such ““truss lattice” panels can be designed to present optimum
stiffness to weight ratio. Deshpande et al. (2001b) have analysed the conditions under which pin-jointed
truss lattices can present a completely stretching-dominated deformation behaviour (i.e. full triangulation).
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As the stiffness of such lattices corresponds to the maximum achievable stiffness for a fibre network, it is
instructive to compare the elastic constants predicted by models 1 and 2 with the elastic constants of a com-
pletely stretching-dominated truss lattice with the same volume fraction V;. As reference for comparison, let
us consider a sandwich core consisting of a single layer of pyramidal truss lattice sandwiched between two
solid face-sheets at which the trusses are pin-jointed (the triangulation is thus provided by the face-sheets).
As demonstrated by Deshpande and Fleck (2001), the values of E3 and G;3 for such a core express as

E .

33 = Vsin*y (22)
and

Gs Vi .,

z =g sin 2y (23)

(the same expressions apply for a tetrahedral truss lattice). For E3, the expression (22) does not depend
whether four trusses meet at each node on the face-sheets, like in pyramidal lattices, or only two trusses
meet at each node, like in interconnected fibre networks. For G3, the expression (23) for pyramidal lattices
apply for the case of two trusses meeting at each node only when the shear direction is parallel to one of the
two in-plane fibre directions. Expressions (22) and (23) for V;= 0.2 are presented as dot-dashed curves in
Fig. 8. First, it can be noticed in Fig. 8b that the experimental value for Fj is larger than the truss lattice E3
value, which was anticipated to represent an upper bound. The reason is that the truss lattice model is based
on the hypothesis of perfect pin-jointing at the nodes. In actual fibrous networks, the fibres segments do not
behave like pin-jointed struts because free rotation at the nodes is prevented. In the case of Ej, the stiffening
contribution due to the moments at the nodes increases when i/ decreases. As a result, for a network of
interconnected fibres, E5 does not tend to vanish when i/ tends towards zero, in contrast to the trend ex-
pressed by (22). Nevertheless, relations (22) and (23) may be considered as providing relevant estimates
of E3 and Gj3 for fully triangulated, stretching-dominated fibre networks, except at low  for E5 and at
high  for Gy3. Fig. 8 shows that, at high , the predictions of the two models for both E5 and G5 are lower
than the predictions of the truss lattice model. At low /, model 2 predictions are close to the truss lattice
values and, for Gy3, both curves tend to agree with experimental results.

Fig. 9 presents the variation as a function of  of the bounds for the out-of-plane Poisson ratio vz de-
rived from the two conditions (20) and (21) for V;=0.20 (only the lowest of the two upper bounds and
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_4: | | L L L =
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Fig. 9. Variation as a function of ¥ of the bounds for the out-of-plane Poisson ratio v;3 for ;= 0.20. The rectangle in grey scale
locates the vy3 value measured for the reference material.
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the highest of the two lower bounds are shown). The value of v;; measured for the reference material is
located in Fig. 9 in the form of a rectangle in grey scale. Obviously, the consideration of upper and lower
bounds is not as informative for the Poisson ratios as for the other engineering elastic constants because
these bounds span a very large range. Nevertheless, the curves predict that the possibility of a negative Pois-
son effect increases sharply as i/ decreases. The (largely negative) v,3 value measured for the reference mate-
rial is found to be fully compatible with the model predictions.

4. Conclusion

The main objective underneath the present paper was to design a model that could account for two fea-
tures of random planar fibre networks: the negative Poisson ratio behaviour and the random triangulation.
Indeed, these features were not embedded in “model 1 developed by Delincé and Delannay (2004). The
“model 27 proposed in this paper may be viewed as an extension in 3D of a 2D model for the elastic prop-
erties of honeycombs (Gibson and Ashby, 1997). This model can exhibit negative Poisson ratio behaviour
in the three principal directions. It can thus correctly represent the behaviour of materials made of entan-
gled fibres. The use of plates appears adequate for modelling the triangulation effect. However, the values of
a and c to be used for the size of the plates, which determines the degree of triangulation, cannot be deter-
mined a priori. Comparison with experimental data suggests that the choice ¢ = a* and ¢ = ¢* with ¢* and
¢* defined by (3) and (4) is not unrealistic.

As expected, model 2 is generally stiffer than model 1. It follows that the predictions of model 2 for G;
appear to agree with the value measured for the reference material. This result is important because G is a
major parameter for the design of sandwich cores. However, no such agreement is demonstrated for the
predictions of E; and E3 which remain significantly lower than experimental values. Nevertheless, although
fully quantitative agreement with experiment is not demonstrated, the model can provide clues for orienting
the design of the fibre orientation distribution that would provide the most adequate elastic anisotropy for
the aimed application.

A major difficulty arises from the very low y angles characterising the reference material. Obviously,
experimental data for random planar networks presenting higher average  angles should be obtained in
order to better assess the two models. Conversely, different hypotheses or additional phenomena should
be considered for accounting more accurately for the mechanisms governing the in-plane and out-of-plane
stiffness at low . Improved models should be designed in which fibres do not cross one another but are in
contact along their external surface. These models should also account for the stiffening due to the possi-
bility of squeezing of a fibre between two other fibres, a phenomenon that cannot occur when fibres cross
one another along their symmetry axis. It should also be considered that a strain increment can cause some
fibres to create a new contact, a mechanism that can affect the value of the Poisson ratio.
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Appendix A. Influence of triangulation on the in-plane modulus E;

Fig. A.1 sketches the architecture of a random network of fibres presenting a low out-of-plane angle .
Only 4 fibres segments meet at each node. These segments, which are assumed to be straight, form rings
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Fig. A.1. (a) Sketch of the architecture of a random fibre network containing mostly hexagonal and triangular rings; (b) representation
of the network as a stacking of 2D nets of regular hexagons and triangles separated by a distance zD.

more or less parallel to the plane of isotropy. The number of segments of which these rings are actually
made is variable. According to Gibson and Ashby (1997), in three-dimensional cellular structures, the num-
ber of edges per cell face is commonly close to 5.1. Hence, the fibre network is represented in Fig. A.la as
consisting of a combination of hexagonal and triangular rings: hexagonal rings account for the contribution
of fibre bending to the in-plane compliance whereas triangular rings account for the contribution of trian-
gulation. As a first approximation, it may be considered that the in-plane elastic properties derive primarily
from the interconnections inside these rings, i.c. that the interconnections between rings in the x5 direction
play only a minor role. Hence, as suggested in Fig. A.1b, the in-plane modulus E| of the actual structure
can be estimated using, as a model, a stacking of two-dimensional nets made either of regular hexagons or
of equilateral triangles, with constant distance L = /D between the nodes. For any given relative proportion
of hexagonal and triangular rings, the distance that separates these nets in the x3 direction can be derived
from the actual network fibre volume fraction, V. The values of the in-plane moduli £,y and Et for 2D
nets containing only hexagons or only triangles, respectively, can then be calculated using the mechanics of
honeycombs (e.g. Gibson and Ashby, 1997). One obtains

Em 9 1
7*4Vf 2 (A1)
and
E]T o 3
£ 4" 2

Using, as for the reference material, V;= 0.2 and / = 10, relation (A.1) yields E;y/E = 4.5 X 1072 and rela-
tion (A.2) yields E;1/E = 150 x 10~>. These values are, respectively, much lower and much higher than the
value E/E ~ 35x 107> that was experimentally measured by Delannay and Clyne (1999). It may thus be
concluded that, in order to quantitatively predict the experimental values, the model must involve some
degree of triangulation.

Appendix B. Derivation of the compliance matrix components Sj;

The analysis procedure being identical for the two models of Figs. 4 and 5, it will be illustrated only for
the case of the model of Fig. 5. As represented in Fig. B.1, the elastic response of the RVE under normal
stresses a1, 022, OT 033 can be fully characterised by considering only half of the segment AB together with a
plate of size aL/2 x cL/2 x "L/2. A simple force oriented along either of the three reference axes is applied
on the middle of the fibre. Let us denote this force p, = Px;. By symmetry, no rotation at node A can occur
for loading along x;. However, for loading along x, or x3, the moment at the node has a component per-
pendicular to the plate, which induces an in-plane deformation of the plate. We neglect the effect of this
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Fig. B.1. Representative element for characterising the elastic behaviour of the model of Fig. 5 under normal stresses a;;, 02, Or 033.

cL2

moment and assume the absence of any rotation at the node for this configuration. Neglecting the contri-
bution of shear, the relative displacement of the two nodes A and B at the ends of the fibre segment of
length L is the sum of an axial stretching v, and a bending deflection »,. Both displacements can easily
be derived from elastic beam mechanics. The displacement 45 in direction x; of the load is obtained as
the scalar product

A= (va+ ) - x;. (B.1)

When loading along p, or ps, the deformation of the two plates in the RVE also contributes to the defor-
mation of the RVE. Even though we assume no in-plane rotation at the node, the plate deformation is not
uniform. However, we approximate this deformation as equal to the deformation ¢,; of the plates under a
uniform stress. The corresponding contributions 4,, to the relative displacement of the cell boundaries are
thus easily obtained. For example, when loading the model of Fig. B.1 along p»,

4Pa
ApZ = szzaL = ETCL . (B2)
Using (9) and (17), we have
Y
'c=—. B.3
al’® (B.3)
Hence
4PPa>  161* P 3 &
Ap = === B.4
27 Enl  3nE L4 P (B4)
and
161* P 3 a’c
Ap3 = —V8p226L = —Vﬁ Z Z 1—2 (B'S)
Finally, the compliance tensor components S; with i,j =1, 2 or 3 are obtained as
1 A+ 4,
L (B.6)
E; 0:X;
and
g, = Vi _Ant Ay (B.7)

ij —
Ei Giin

where X; is the size of the RVE in direction x; (refer to Figs. 4 and 5). The stress components o;; are obtained
from the p; and the area of the corresponding RVE faces. The ensuing S;; expressions are listed in Tables 1
and 2.
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For obtaining the shear compliances S;; with i =4, 5, or 6, the response of the network of Fig. 5 under
shear stresses 71,, 713 and 7,3 can be characterised using the three representative elements sketched in Fig.
B.2. For symmetry reasons, the middle of the fibres is under simple load (no bending moment) and no node
rotation occurs under the shear stresses 7,5, 713 (Fig. B.2a and b). We neglect the elastic rotation of the node
that can occur in the plane of the plate under 7,3 (Fig. B.2c). We adapt here for a 3D periodical model the
procedure used by Gibson and Ashby (1997) for deriving the in-plane shear components of the stiffness ma-
trix of a 2D honeycomb.

Equilibrium allows deriving the force on the middle of the fibres as the sum of two forces denoted p;, =
Pix; and g; = Q;x;. Let us consider for example Fig. B.2a. The shear stress can be expressed either as

Py
pr— B.S
e cos ¥ cos O(c + sin ) (B3)
or as
O,
= . B.9
o2 L*(a + cos s sin 0)(c + sin ) (B.9)
Hence
a+cosysin
On = —wPl. (B.10)

cosy cos 8

alL/2 (a)

aL > (c)

A

Fig. B.2. Three representative elements used for characterising the elastic behaviour of the model of Fig. 5 under shear stresses 11, (a),
713 (b), and 123 ().
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The same procedure can be followed for deriving Q3 and Q»s.

The relative displacement of the middle of the fibres with respect to the node (i.e. over a length L/2) is the
sum of a bending deflection v,; and an axial stretching v,; which can be derived from elastic beam
mechanics.

The displacement vy,; of the middle of the fibre causes a rotation q’)El_j of the node around axis x; (with
k#1, j). In vectorial form, this rotation can be expressed

¢Ei/ = (u X vyy) - X (B.11)

The bending of the two fibres also results in a rotation (j)g. of the middle of the edge of the plate with respect
to the middle of the line connecting the two points of application of the loads (middles of the two fibres
supporting the plate). This rotation can be expressed as

n Si
¢s = qsb,‘_,‘)?iv (B'lz)

where X; is the size of the RVE in direction x; and s; is the size of the plate in direction x;, which is equal to
aL or cL depending on the direction. ¢} is zero when s; = 0 i.e. when the plate is perpendicular to axis x;.
Hence, due to the bending of the fibres, the middle of the plate shifts with respect to the middles of the fibres
over a distance

n n X;
Avij = bpys; — PX; = by (Sj =i y’) (B.13)

One of the two fibres elongates while the other contracts. As represented in Fig. B.3, the result is a rotation
of the plate by an angle 4’55/ plus a displacement of the node by a length 4. 4’2,;,— and 4}, can be derived,

from consideration of Fig. B.3, as

2(vay - X))
- )/(1» j (B.14)
and
Ay = Vaij - Xi- (B.15)

Fig. B.3. Rotation and displacement of the plate as a result of the bending and elongation/contraction of the two fibres.
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The total displacement 4,;; of the middle of the plate (with respect to the middle of the fibres) resulting from
the axial elongation of the fibres is then obtained as
Aaij = Poys; + A3 (B.16)

aij*,

Figs. B.2a and b indicate that the deflection of the plate under the shear stresses 71, or 713 adds a further
contribution to the deformation of the RVE. For example, under 7, (Fig. B.2a), the deflection A4}, of the
middle of the plate with respect to the node writes (neglecting the contribution due to shear)

2P’
AII,Z = ELCZ‘N} (B17)
which, using (9) and (B.3) translates into
4 3.4
p _ 8PI" 3d'c (B.18)

27 30EL AnV,’

In the case of a shear stress 7,3 (Fig. B.2c), the plate undergoes no bending but only in-plane shear (that
may be non-negligible in comparison to the other contributions for certain values of y and 6). The displace-
ment of the middle of the plate with respect to the node writes

2Pc

AP, — B.19

23 ,uLat” ’ ( )
where u is the shear modulus of the fibres. Using u = 3E/8 allows deriving

8PI* _¢?
=2 B.20
®3nEL” P (B.20)
Finally, the shear compliances S; with i =4, 5 or 6 are obtained as, for example
o = L v 2(4bin+ dun + AG)LXTXG (B21)

66 G, T12 PX /2, . ’
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